\(\int \frac {\cos ^{\frac {3}{2}}(c+d x)}{(a+b \sec (c+d x))^{5/2}} \, dx\) [869]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [B] (warning: unable to verify)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 391 \[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{(a+b \sec (c+d x))^{5/2}} \, dx=\frac {2 \left (a^4+16 a^2 b^2-16 b^4\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{3 a^4 \left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}-\frac {8 b \left (2 a^4-7 a^2 b^2+4 b^4\right ) \sqrt {\cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{3 a^4 \left (a^2-b^2\right )^2 d \sqrt {\frac {b+a \cos (c+d x)}{a+b}}}+\frac {2 b^2 \sqrt {\cos (c+d x)} \sin (c+d x)}{3 a \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}+\frac {4 b^2 \left (5 a^2-3 b^2\right ) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 a^2 \left (a^2-b^2\right )^2 d \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (a^4-13 a^2 b^2+8 b^4\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{3 a^3 \left (a^2-b^2\right )^2 d} \]

[Out]

2/3*b^2*sin(d*x+c)*cos(d*x+c)^(1/2)/a/(a^2-b^2)/d/(a+b*sec(d*x+c))^(3/2)+4/3*b^2*(5*a^2-3*b^2)*sin(d*x+c)*cos(
d*x+c)^(1/2)/a^2/(a^2-b^2)^2/d/(a+b*sec(d*x+c))^(1/2)+2/3*(a^4+16*a^2*b^2-16*b^4)*(cos(1/2*d*x+1/2*c)^2)^(1/2)
/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2)*(a/(a+b))^(1/2))*((b+a*cos(d*x+c))/(a+b))^(1/2)/a^4/(
a^2-b^2)/d/cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2)+2/3*(a^4-13*a^2*b^2+8*b^4)*sin(d*x+c)*cos(d*x+c)^(1/2)*(a+b
*sec(d*x+c))^(1/2)/a^3/(a^2-b^2)^2/d-8/3*b*(2*a^4-7*a^2*b^2+4*b^4)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/
2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2)*(a/(a+b))^(1/2))*cos(d*x+c)^(1/2)*(a+b*sec(d*x+c))^(1/2)/a^4/(a^2-b^
2)^2/d/((b+a*cos(d*x+c))/(a+b))^(1/2)

Rubi [A] (verified)

Time = 1.76 (sec) , antiderivative size = 391, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.440, Rules used = {4349, 3932, 4185, 4189, 4120, 3941, 2734, 2732, 3943, 2742, 2740} \[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{(a+b \sec (c+d x))^{5/2}} \, dx=\frac {4 b^2 \left (5 a^2-3 b^2\right ) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 a^2 d \left (a^2-b^2\right )^2 \sqrt {a+b \sec (c+d x)}}+\frac {2 b^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 a d \left (a^2-b^2\right ) (a+b \sec (c+d x))^{3/2}}+\frac {2 \left (a^4+16 a^2 b^2-16 b^4\right ) \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{3 a^4 d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}-\frac {8 b \left (2 a^4-7 a^2 b^2+4 b^4\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{3 a^4 d \left (a^2-b^2\right )^2 \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}+\frac {2 \left (a^4-13 a^2 b^2+8 b^4\right ) \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}{3 a^3 d \left (a^2-b^2\right )^2} \]

[In]

Int[Cos[c + d*x]^(3/2)/(a + b*Sec[c + d*x])^(5/2),x]

[Out]

(2*(a^4 + 16*a^2*b^2 - 16*b^4)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)])/(3*a^
4*(a^2 - b^2)*d*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Sec[c + d*x]]) - (8*b*(2*a^4 - 7*a^2*b^2 + 4*b^4)*Sqrt[Cos[c + d
*x]]*EllipticE[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[a + b*Sec[c + d*x]])/(3*a^4*(a^2 - b^2)^2*d*Sqrt[(b + a*Cos[c
+ d*x])/(a + b)]) + (2*b^2*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*a*(a^2 - b^2)*d*(a + b*Sec[c + d*x])^(3/2)) + (
4*b^2*(5*a^2 - 3*b^2)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*a^2*(a^2 - b^2)^2*d*Sqrt[a + b*Sec[c + d*x]]) + (2*(
a^4 - 13*a^2*b^2 + 8*b^4)*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/(3*a^3*(a^2 - b^2)^2*d)

Rule 2732

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a + b]/d)*EllipticE[(1/2)*(c - Pi/2
+ d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2734

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2740

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*Sqrt[a + b]))*EllipticF[(1/2)*(c - P
i/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2742

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 3932

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[b^2*Co
t[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*((d*Csc[e + f*x])^n/(a*f*(m + 1)*(a^2 - b^2))), x] + Dist[1/(a*(m + 1)
*(a^2 - b^2)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*(a^2*(m + 1) - b^2*(m + n + 1) - a*b*(m + 1
)*Csc[e + f*x] + b^2*(m + n + 2)*Csc[e + f*x]^2), x], x] /; FreeQ[{a, b, d, e, f, n}, x] && NeQ[a^2 - b^2, 0]
&& LtQ[m, -1] && IntegersQ[2*m, 2*n]

Rule 3941

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Dist[Sqrt[a +
 b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]]), Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; Free
Q[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3943

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[Sqrt[d*C
sc[e + f*x]]*(Sqrt[b + a*Sin[e + f*x]]/Sqrt[a + b*Csc[e + f*x]]), Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4120

Int[(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(
b_.) + (a_)]), x_Symbol] :> Dist[A/a, Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x], x] - Dist[(A*b -
a*B)/(a*d), Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && Ne
Q[A*b - a*B, 0] && NeQ[a^2 - b^2, 0]

Rule 4185

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(A*b^2 - a*b*B + a^2*C)*Cot[e + f*x]*(a +
b*Csc[e + f*x])^(m + 1)*((d*Csc[e + f*x])^n/(a*f*(m + 1)*(a^2 - b^2))), x] + Dist[1/(a*(m + 1)*(a^2 - b^2)), I
nt[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*Simp[a*(a*A - b*B + a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C)*
(m + n + 1) - a*(A*b - a*B + b*C)*(m + 1)*Csc[e + f*x] + (A*b^2 - a*b*B + a^2*C)*(m + n + 2)*Csc[e + f*x]^2, x
], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, n}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] &&  !(ILtQ[m + 1/2, 0] &
& ILtQ[n, 0])

Rule 4189

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1
)*((d*Csc[e + f*x])^n/(a*f*n)), x] + Dist[1/(a*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[
a*B*n - A*b*(m + n + 1) + a*(A + A*n + C*n)*Csc[e + f*x] + A*b*(m + n + 2)*Csc[e + f*x]^2, x], x], x] /; FreeQ
[{a, b, d, e, f, A, B, C, m}, x] && NeQ[a^2 - b^2, 0] && LeQ[n, -1]

Rule 4349

Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Csc[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[
u, x]

Rubi steps \begin{align*} \text {integral}& = \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sec ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^{5/2}} \, dx \\ & = \frac {2 b^2 \sqrt {\cos (c+d x)} \sin (c+d x)}{3 a \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}-\frac {\left (2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {-\frac {3 a^2}{2}+3 b^2+\frac {3}{2} a b \sec (c+d x)-2 b^2 \sec ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^{3/2}} \, dx}{3 a \left (a^2-b^2\right )} \\ & = \frac {2 b^2 \sqrt {\cos (c+d x)} \sin (c+d x)}{3 a \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}+\frac {4 b^2 \left (5 a^2-3 b^2\right ) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 a^2 \left (a^2-b^2\right )^2 d \sqrt {a+b \sec (c+d x)}}+\frac {\left (4 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\frac {3}{4} \left (a^4-13 a^2 b^2+8 b^4\right )-\frac {1}{2} a b \left (3 a^2-b^2\right ) \sec (c+d x)+b^2 \left (5 a^2-3 b^2\right ) \sec ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)}} \, dx}{3 a^2 \left (a^2-b^2\right )^2} \\ & = \frac {2 b^2 \sqrt {\cos (c+d x)} \sin (c+d x)}{3 a \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}+\frac {4 b^2 \left (5 a^2-3 b^2\right ) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 a^2 \left (a^2-b^2\right )^2 d \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (a^4-13 a^2 b^2+8 b^4\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{3 a^3 \left (a^2-b^2\right )^2 d}-\frac {\left (8 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\frac {3}{2} b \left (2 a^4-7 a^2 b^2+4 b^4\right )-\frac {3}{8} a \left (a^4+7 a^2 b^2-4 b^4\right ) \sec (c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx}{9 a^3 \left (a^2-b^2\right )^2} \\ & = \frac {2 b^2 \sqrt {\cos (c+d x)} \sin (c+d x)}{3 a \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}+\frac {4 b^2 \left (5 a^2-3 b^2\right ) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 a^2 \left (a^2-b^2\right )^2 d \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (a^4-13 a^2 b^2+8 b^4\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{3 a^3 \left (a^2-b^2\right )^2 d}-\frac {\left (4 b \left (2 a^4-7 a^2 b^2+4 b^4\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx}{3 a^4 \left (a^2-b^2\right )^2}+\frac {\left (8 \left (\frac {3}{8} a^2 \left (a^4+7 a^2 b^2-4 b^4\right )+\frac {3}{2} b^2 \left (2 a^4-7 a^2 b^2+4 b^4\right )\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+b \sec (c+d x)}} \, dx}{9 a^4 \left (a^2-b^2\right )^2} \\ & = \frac {2 b^2 \sqrt {\cos (c+d x)} \sin (c+d x)}{3 a \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}+\frac {4 b^2 \left (5 a^2-3 b^2\right ) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 a^2 \left (a^2-b^2\right )^2 d \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (a^4-13 a^2 b^2+8 b^4\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{3 a^3 \left (a^2-b^2\right )^2 d}+\frac {\left (8 \left (\frac {3}{8} a^2 \left (a^4+7 a^2 b^2-4 b^4\right )+\frac {3}{2} b^2 \left (2 a^4-7 a^2 b^2+4 b^4\right )\right ) \sqrt {b+a \cos (c+d x)}\right ) \int \frac {1}{\sqrt {b+a \cos (c+d x)}} \, dx}{9 a^4 \left (a^2-b^2\right )^2 \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}-\frac {\left (4 b \left (2 a^4-7 a^2 b^2+4 b^4\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {b+a \cos (c+d x)} \, dx}{3 a^4 \left (a^2-b^2\right )^2 \sqrt {b+a \cos (c+d x)}} \\ & = \frac {2 b^2 \sqrt {\cos (c+d x)} \sin (c+d x)}{3 a \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}+\frac {4 b^2 \left (5 a^2-3 b^2\right ) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 a^2 \left (a^2-b^2\right )^2 d \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (a^4-13 a^2 b^2+8 b^4\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{3 a^3 \left (a^2-b^2\right )^2 d}+\frac {\left (8 \left (\frac {3}{8} a^2 \left (a^4+7 a^2 b^2-4 b^4\right )+\frac {3}{2} b^2 \left (2 a^4-7 a^2 b^2+4 b^4\right )\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}}\right ) \int \frac {1}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}} \, dx}{9 a^4 \left (a^2-b^2\right )^2 \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}-\frac {\left (4 b \left (2 a^4-7 a^2 b^2+4 b^4\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}} \, dx}{3 a^4 \left (a^2-b^2\right )^2 \sqrt {\frac {b+a \cos (c+d x)}{a+b}}} \\ & = \frac {2 \left (a^4+16 a^2 b^2-16 b^4\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{3 a^4 \left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}-\frac {8 b \left (2 a^4-7 a^2 b^2+4 b^4\right ) \sqrt {\cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{3 a^4 \left (a^2-b^2\right )^2 d \sqrt {\frac {b+a \cos (c+d x)}{a+b}}}+\frac {2 b^2 \sqrt {\cos (c+d x)} \sin (c+d x)}{3 a \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}+\frac {4 b^2 \left (5 a^2-3 b^2\right ) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 a^2 \left (a^2-b^2\right )^2 d \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (a^4-13 a^2 b^2+8 b^4\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{3 a^3 \left (a^2-b^2\right )^2 d} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 12.41 (sec) , antiderivative size = 527, normalized size of antiderivative = 1.35 \[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{(a+b \sec (c+d x))^{5/2}} \, dx=\frac {(b+a \cos (c+d x))^3 \left (\frac {2 \sin (c+d x)}{3 a^3}+\frac {2 b^4 \sin (c+d x)}{3 a^3 \left (a^2-b^2\right ) (b+a \cos (c+d x))^2}+\frac {8 \left (-3 a^2 b^3 \sin (c+d x)+2 b^5 \sin (c+d x)\right )}{3 a^3 \left (a^2-b^2\right )^2 (b+a \cos (c+d x))}\right )}{d \cos ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x))^{5/2}}+\frac {2 \cos ^{\frac {3}{2}}(c+d x) (b+a \cos (c+d x))^2 \sec ^{\frac {5}{2}}(c+d x) \left (\cos ^2\left (\frac {1}{2} (c+d x)\right ) \sec (c+d x)\right )^{3/2} \left (-4 i b \left (2 a^5+2 a^4 b-7 a^3 b^2-7 a^2 b^3+4 a b^4+4 b^5\right ) E\left (i \text {arcsinh}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {-a+b}{a+b}\right ) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {\frac {(b+a \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}-i a \left (a^5-8 a^4 b+7 a^3 b^2+28 a^2 b^3-4 a b^4-16 b^5\right ) \operatorname {EllipticF}\left (i \text {arcsinh}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {-a+b}{a+b}\right ) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {\frac {(b+a \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}-4 b \left (2 a^4-7 a^2 b^2+4 b^4\right ) (b+a \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right )^{3/2} \tan \left (\frac {1}{2} (c+d x)\right )\right )}{3 a^4 \left (a^2-b^2\right )^2 d (a+b \sec (c+d x))^{5/2}} \]

[In]

Integrate[Cos[c + d*x]^(3/2)/(a + b*Sec[c + d*x])^(5/2),x]

[Out]

((b + a*Cos[c + d*x])^3*((2*Sin[c + d*x])/(3*a^3) + (2*b^4*Sin[c + d*x])/(3*a^3*(a^2 - b^2)*(b + a*Cos[c + d*x
])^2) + (8*(-3*a^2*b^3*Sin[c + d*x] + 2*b^5*Sin[c + d*x]))/(3*a^3*(a^2 - b^2)^2*(b + a*Cos[c + d*x]))))/(d*Cos
[c + d*x]^(5/2)*(a + b*Sec[c + d*x])^(5/2)) + (2*Cos[c + d*x]^(3/2)*(b + a*Cos[c + d*x])^2*Sec[c + d*x]^(5/2)*
(Cos[(c + d*x)/2]^2*Sec[c + d*x])^(3/2)*((-4*I)*b*(2*a^5 + 2*a^4*b - 7*a^3*b^2 - 7*a^2*b^3 + 4*a*b^4 + 4*b^5)*
EllipticE[I*ArcSinh[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Sec[(c + d*x)/2]^2*Sqrt[((b + a*Cos[c + d*x])*Sec[(c
+ d*x)/2]^2)/(a + b)] - I*a*(a^5 - 8*a^4*b + 7*a^3*b^2 + 28*a^2*b^3 - 4*a*b^4 - 16*b^5)*EllipticF[I*ArcSinh[Ta
n[(c + d*x)/2]], (-a + b)/(a + b)]*Sec[(c + d*x)/2]^2*Sqrt[((b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2)/(a + b)]
- 4*b*(2*a^4 - 7*a^2*b^2 + 4*b^4)*(b + a*Cos[c + d*x])*(Sec[(c + d*x)/2]^2)^(3/2)*Tan[(c + d*x)/2]))/(3*a^4*(a
^2 - b^2)^2*d*(a + b*Sec[c + d*x])^(5/2))

Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(4533\) vs. \(2(415)=830\).

Time = 10.85 (sec) , antiderivative size = 4534, normalized size of antiderivative = 11.60

method result size
default \(\text {Expression too large to display}\) \(4534\)

[In]

int(cos(d*x+c)^(3/2)/(a+b*sec(d*x+c))^(5/2),x,method=_RETURNVERBOSE)

[Out]

2/3/d/((a-b)/(a+b))^(1/2)/(a+b)^2/(a-b)/a^4*(9*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+
1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^5*b*cos(d*x+c)^3+24*(
(a-b)/(a+b))^(1/2)*a*b^5*cos(d*x+c)*sin(d*x+c)+(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+
1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^6*cos(d*x+c)^3+2*(1/(
a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c
)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^6*cos(d*x+c)^2-16*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(co
s(d*x+c)+1))^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*b^6*cos(d*x+c)
^2+(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(-co
t(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^5*b+9*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x
+c)+1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^4*b^2+16*(1/(a+b)
*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+cs
c(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^3*b^3-12*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^
(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^2*b^4-16*(1/(a+b)*(b+a*co
s(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)
),(-(a+b)/(a-b))^(1/2))*a*b^5-8*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*Ellip
ticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^4*b^2+28*(1/(a+b)*(b+a*cos(d*x+c))/(
cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(
a-b))^(1/2))*a^2*b^4+(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticF(((a-b)
/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^6*cos(d*x+c)-32*(1/(a+b)*(b+a*cos(d*x+c))/(cos(
d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b)
)^(1/2))*b^6*cos(d*x+c)+((a-b)/(a+b))^(1/2)*a^5*b*cos(d*x+c)^3*sin(d*x+c)-((a-b)/(a+b))^(1/2)*a^4*b^2*cos(d*x+
c)^3*sin(d*x+c)-((a-b)/(a+b))^(1/2)*a^3*b^3*cos(d*x+c)^3*sin(d*x+c)+6*((a-b)/(a+b))^(1/2)*a^2*b^4*cos(d*x+c)^2
*sin(d*x+c)+((a-b)/(a+b))^(1/2)*a^4*b^2*sin(d*x+c)-7*((a-b)/(a+b))^(1/2)*a^3*b^3*sin(d*x+c)-20*((a-b)/(a+b))^(
1/2)*a^2*b^4*sin(d*x+c)+8*((a-b)/(a+b))^(1/2)*a*b^5*sin(d*x+c)+((a-b)/(a+b))^(1/2)*a^6*cos(d*x+c)^2*sin(d*x+c)
+((a-b)/(a+b))^(1/2)*a^6*cos(d*x+c)^3*sin(d*x+c)-16*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*
x+c)+1))^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*b^6+16*((a-b)/(a+b
))^(1/2)*b^6*sin(d*x+c)+28*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticE(
((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^3*b^3*cos(d*x+c)^3+16*(1/(a+b)*(b+a*cos(d
*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(
-(a+b)/(a-b))^(1/2))*a^4*b^2*cos(d*x+c)^3-12*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1)
)^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^3*b^3*cos(d*x+c)^3-16*(
1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*
x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^2*b^4*cos(d*x+c)^3-8*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*
(1/(cos(d*x+c)+1))^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^5*b*co
s(d*x+c)^3-16*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticE(((a-b)/(a+b))
^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a*b^5*cos(d*x+c)^3+19*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x
+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(
1/2))*a^5*b*cos(d*x+c)^2+41*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticF
(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^4*b^2*cos(d*x+c)^2-8*(1/(a+b)*(b+a*cos(d
*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(
-(a+b)/(a-b))^(1/2))*a^3*b^3*cos(d*x+c)^2-44*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1)
)^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^2*b^4*cos(d*x+c)^2-16*(
1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*
x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a*b^5*cos(d*x+c)^2-16*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(
1/(cos(d*x+c)+1))^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^5*b*cos
(d*x+c)^2-8*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticE(((a-b)/(a+b))^(
1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^4*b^2*cos(d*x+c)^2+56*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x
+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(
1/2))*a^3*b^3*cos(d*x+c)^2+28*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*Ellipti
cE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^2*b^4*cos(d*x+c)^2-32*(1/(a+b)*(b+a*co
s(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)
),(-(a+b)/(a-b))^(1/2))*a*b^5*cos(d*x+c)^2+11*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1
))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^5*b*cos(d*x+c)+34*(1/(
a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c
)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^4*b^2*cos(d*x+c)+20*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(
cos(d*x+c)+1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^3*b^3*cos(
d*x+c)-40*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/
2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^2*b^4*cos(d*x+c)-32*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+
1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2)
)*a*b^5*cos(d*x+c)-8*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticE(((a-b)
/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^5*b*cos(d*x+c)-16*(1/(a+b)*(b+a*cos(d*x+c))/(co
s(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-
b))^(1/2))*a^4*b^2*cos(d*x+c)+28*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*Elli
pticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^3*b^3*cos(d*x+c)+56*(1/(a+b)*(b+a*c
os(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c
)),(-(a+b)/(a-b))^(1/2))*a^2*b^4*cos(d*x+c)-16*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+
1))^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a*b^5*cos(d*x+c)+2*((a-
b)/(a+b))^(1/2)*a^5*b*cos(d*x+c)*sin(d*x+c)-13*((a-b)/(a+b))^(1/2)*a^4*b^2*cos(d*x+c)*sin(d*x+c)-29*((a-b)/(a+
b))^(1/2)*a^3*b^3*cos(d*x+c)*sin(d*x+c)+14*((a-b)/(a+b))^(1/2)*a^2*b^4*cos(d*x+c)*sin(d*x+c)-5*((a-b)/(a+b))^(
1/2)*a^5*b*cos(d*x+c)^2*sin(d*x+c)-7*((a-b)/(a+b))^(1/2)*a^4*b^2*cos(d*x+c)^2*sin(d*x+c)+5*((a-b)/(a+b))^(1/2)
*a^3*b^3*cos(d*x+c)^2*sin(d*x+c))*cos(d*x+c)^(1/2)*(a+b*sec(d*x+c))^(1/2)/(b+a*cos(d*x+c))^2/(cos(d*x+c)+1)

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.18 (sec) , antiderivative size = 971, normalized size of antiderivative = 2.48 \[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{(a+b \sec (c+d x))^{5/2}} \, dx=\text {Too large to display} \]

[In]

integrate(cos(d*x+c)^(3/2)/(a+b*sec(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

1/9*(6*(a^6*b^2 - 13*a^4*b^4 + 8*a^2*b^6 + (a^8 - 2*a^6*b^2 + a^4*b^4)*cos(d*x + c)^2 + 2*(a^7*b - 8*a^5*b^3 +
 5*a^3*b^5)*cos(d*x + c))*sqrt((a*cos(d*x + c) + b)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) + (sqrt(2)*(
-3*I*a^8 - 37*I*a^6*b^2 + 68*I*a^4*b^4 - 32*I*a^2*b^6)*cos(d*x + c)^2 - 2*sqrt(2)*(3*I*a^7*b + 37*I*a^5*b^3 -
68*I*a^3*b^5 + 32*I*a*b^7)*cos(d*x + c) + sqrt(2)*(-3*I*a^6*b^2 - 37*I*a^4*b^4 + 68*I*a^2*b^6 - 32*I*b^8))*sqr
t(a)*weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) + 3*I*a*s
in(d*x + c) + 2*b)/a) + (sqrt(2)*(3*I*a^8 + 37*I*a^6*b^2 - 68*I*a^4*b^4 + 32*I*a^2*b^6)*cos(d*x + c)^2 - 2*sqr
t(2)*(-3*I*a^7*b - 37*I*a^5*b^3 + 68*I*a^3*b^5 - 32*I*a*b^7)*cos(d*x + c) + sqrt(2)*(3*I*a^6*b^2 + 37*I*a^4*b^
4 - 68*I*a^2*b^6 + 32*I*b^8))*sqrt(a)*weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3
, 1/3*(3*a*cos(d*x + c) - 3*I*a*sin(d*x + c) + 2*b)/a) - 12*(sqrt(2)*(2*I*a^7*b - 7*I*a^5*b^3 + 4*I*a^3*b^5)*c
os(d*x + c)^2 + 2*sqrt(2)*(2*I*a^6*b^2 - 7*I*a^4*b^4 + 4*I*a^2*b^6)*cos(d*x + c) + sqrt(2)*(2*I*a^5*b^3 - 7*I*
a^3*b^5 + 4*I*a*b^7))*sqrt(a)*weierstrassZeta(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, weierstras
sPInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) + 3*I*a*sin(d*x + c) + 2
*b)/a)) - 12*(sqrt(2)*(-2*I*a^7*b + 7*I*a^5*b^3 - 4*I*a^3*b^5)*cos(d*x + c)^2 + 2*sqrt(2)*(-2*I*a^6*b^2 + 7*I*
a^4*b^4 - 4*I*a^2*b^6)*cos(d*x + c) + sqrt(2)*(-2*I*a^5*b^3 + 7*I*a^3*b^5 - 4*I*a*b^7))*sqrt(a)*weierstrassZet
a(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*
a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) - 3*I*a*sin(d*x + c) + 2*b)/a)))/((a^11 - 2*a^9*b^2 + a^7*b^4)*d*cos
(d*x + c)^2 + 2*(a^10*b - 2*a^8*b^3 + a^6*b^5)*d*cos(d*x + c) + (a^9*b^2 - 2*a^7*b^4 + a^5*b^6)*d)

Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{(a+b \sec (c+d x))^{5/2}} \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**(3/2)/(a+b*sec(d*x+c))**(5/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{(a+b \sec (c+d x))^{5/2}} \, dx=\int { \frac {\cos \left (d x + c\right )^{\frac {3}{2}}}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate(cos(d*x+c)^(3/2)/(a+b*sec(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate(cos(d*x + c)^(3/2)/(b*sec(d*x + c) + a)^(5/2), x)

Giac [F]

\[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{(a+b \sec (c+d x))^{5/2}} \, dx=\int { \frac {\cos \left (d x + c\right )^{\frac {3}{2}}}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate(cos(d*x+c)^(3/2)/(a+b*sec(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate(cos(d*x + c)^(3/2)/(b*sec(d*x + c) + a)^(5/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{(a+b \sec (c+d x))^{5/2}} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^{3/2}}{{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \]

[In]

int(cos(c + d*x)^(3/2)/(a + b/cos(c + d*x))^(5/2),x)

[Out]

int(cos(c + d*x)^(3/2)/(a + b/cos(c + d*x))^(5/2), x)